Intercalation from the liquid phase of n-alkylamines ($\mathrm{n}=1-6$) and cyclic amines in α-hafnium phosphate

M arta Suárez, M . L uz R odríguez, Ricardo L lavona, L uisa M . Barcina, A na Vega and J ulio Rodríguez*

Departamento de Q uímica Orgánica e Inorgánica, Facultad de Q uímica, U niversidad de 0 viedo, 33071 Oviedo, Spain

The intercalation behaviour from the liquid phase of n-alkylamines ($n=1-6$) and the cyclic amines aniline, benzylamine, cyclohexylamine, piperidine and pyridine in α-hafnium phosphate $\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ has been studied. The composition of the intercalation compounds was determined and the arrangement of the amines in the interlayer region as mono-(pyridine) or bi-molecular films (the remaining amines) is discussed from data obtained from X-ray diffraction, IR spectroscopy and chemical and thermal analysis.
α - H afnium hydrogenphosphate monohydrate $\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($\alpha-\mathrm{HfP}$) is a layered compound which crystallizes in the monoclinic symmetry with cell constants $a=901.42(1), b=525.66(5)$, $\mathrm{c}=1547.68(2) \mathrm{pm}, \beta=101.66^{\circ}$ and space group $\mathrm{P} 2_{1} / \mathrm{c} .{ }^{1}$ The layers consist of metal atoms lying slightly above and below the mean plane and bridged by phosphate groups from above and below. The water molecule sits inside the cavity near its center forming a hydrogen-bonding network with the phosphate groups as illustrated in Fig. 1. ${ }^{2}$ Theinterlayer distance is 760 pm and the thickness of the layer calculated as the shorter distance between the baricenter of the oxygen of $\mathrm{P}-\mathrm{OH}$ groups present in the opposite sides of one layer is 630 pm . The free area associated with each $\mathrm{P}-\mathrm{OH}$ group is $23.7 \times 10^{4} \mathrm{pm}^{2}$. This compound should exhibit ion-exchange and intercalation properties very similar to those of $\alpha-Z r P$ since they are isomorphous ${ }^{3}$ and the replacement of the tetravalent metal atom does not appreciably modify the acid strength of the phosphate group. Both compounds can readily intercalate basic organic molecules in addition to exchanging ions. ${ }^{4}$

The chemistry of metal(Iv) phosphates with an α-type layered structure has grown considerably and a large number of compounds with a variety of organic groups has been prepared ${ }^{5-8}$ Extensive information has been compiled in recent reviews and books. ${ }^{9-13}$
Interest in the intercalation reactions of α-zirconium phosphate and in the preparation of intercalation compounds with particular properties, such as proton conductivity and catalysis, has led to the preparation of several intercalation compounds with alkylamines, aromatic and heterocyclic bases. ${ }^{12} \mathrm{~N}$ evertheless, $\alpha-H f P$ has scarcely been investigated. Only ion exchange toward Li^{14} and $\mathrm{K}{ }^{15}$ and intercalation from the vapour phase of some alkylamines ${ }^{16}$ has been previously reported.

This paper describes the intercalation behaviour from the liquid phase of n-alkylamines (methyl, ethyl, propyl, butyl, pentyl and hexyl) and cyclic amines (aniline, benzylamine, cyclohexylamine, piperidine and pyridine) in $\alpha-H f P$. X-R ay diffraction, IR spectroscopy and thermal and elemental analysis of the intercalated species allow their composition and the possible arrangement of the amines in the interlayer region to be discussed.

Experimental

P reparations

Crystalline $\alpha-\mathrm{HfP}$ was prepared by refluxing newly formed amorphous hafnium phosphate in $12 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{3} \mathrm{PO}_{4}$ at the boiling point for more than $210 \mathrm{~h} .{ }^{15}$ The gel was obtained by precipitation of a solution of HCl_{4} in aqueous HCl with dilute

Fig. 1 Cavities in the structure of $\alpha-\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$. The solid was washed with deionized water until pH 3.5 , dried at $50^{\circ} \mathrm{C}$ and ground to a particle size of less than 0.03 mm . The totally substituted ammonium phase of $\alpha-\mathrm{HfP}$ was obtained by equilibrating $\alpha-\mathrm{HfP}$ for 48 h with a mixture of NH_{3} (aq) $\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in a ratio of $250 \mathrm{~cm}^{3}: 1 \mathrm{~g}$. The resulting crystallites were identified by means of X-ray diffractometry, IR spectroscopy and chemical and thermal analysis (TG).

Intercalation procedure

The compound $\alpha-\mathrm{HfP}(200 \mathrm{mg})$ was placed in contact with a portion ($20 \mathrm{~cm}^{3}$) of the pure amine $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{NH}_{2}(\mathrm{n}=1-6)$ and the five mentioned cyclic amines and shaken for 48 h at $25^{\circ} \mathrm{C}$ following the batch method. A fter equilibration, the solids were separated by centrifugation, dried in air at $50^{\circ} \mathrm{C}$ and stored over a solution of $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The solid phase was analyzed by means of X-ray power diffraction, IR spectroscopy and chemical and thermal analysis.

A nalytical procedures

Quantitative analysis of hafnium was performed gravimetrically. ${ }^{17} \mathrm{M}$ icroanalytical data ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were obtained with a Perkin-EImer, model 2400 elemental analyzer. The TG curves were taken with a M ettler TA 4000 (TG 50) thermoanalyzer at a

Table 1 M icroanalytical data (C and N) and experimental weight loss at $800^{\circ} \mathrm{C}$ for the intercalated compounds with linear amines and those calculated (in parentheses) from the formulae

	A nalysis (\%)		
	C		N
Weight loss (\%)			
	7.60	8.70	26.95
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 3 \mathrm{CH}_{3} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	(7.48)	(8.72)	(26.79)
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	10.10	5.81	26.45
	(10.03)	(5.85)	(26.33)
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	14.31	5.56	30.52
	(14.22)	(5.53)	(30.40)
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	17.84	5.32	34.16
	(17.96)	(5.24)	(34.05)
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	21.21	5.06	37.50
	(21.33)	(4.98)	(37.33)
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	24.27	4.75	40.35
	(24.39)	(4.74)	(40.30)

Fig. 2 X-Ray diffraction patterns of the n-alkylamine intercalates: (a) methylamine, (b) ethylamine, (c) propylamine, (d) butylamine, (e) pentylamine and (f) hexylamine
heating rate of $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in an atmosphere of nitrogen. $X-R$ ay diffraction patterns were recorded at room temperature on a computer-controlled Philips PW 1729/1720 diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$).

Results and D iscussion

Alkylamine intercalation

Elemental analysis and the total weight loss at $800^{\circ} \mathrm{C}$ enabled the composition of the intercalates to be determined (Table 1). There is a good agreement between the theoretical and experimental values. All the crystal sites available for intercalation are occupied and phases of composition $\alpha-\mathrm{HfP} \cdot 2 \mathrm{RNH} \cdot \mathrm{H}_{2} \mathrm{O}$ are formed (except in the methylamine case), consistent with a bilayered disposition of the amine molecules between the $\alpha-\mathrm{HfP}$ layers. When the intercalated amine is methylamine the intercalation process may be represented by equation (1).

$$
\begin{align*}
& \alpha-\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CH}_{3} \mathrm{NH}_{2} \longrightarrow \\
& \alpha-\mathrm{Hf}\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{NH}_{3} \cdot \mathrm{CH}_{3} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{align*}
$$

X-Ray patterns of the intercalated solids (Fig. 2) show that the compounds are crystalline and maintain the lamellar structure. Their interlayer distances are always higher than that of the α - HfP (7.6 \AA) (Table 2).

Table 2 Interlayer distances and inclination angles of linear amine- α HfP intercalates

A mine	d / \AA	$\alpha /{ }^{\circ}$
E thyl	13.5	56.8
Propyl	17.0	90.0
Butyl	18.6	67.0
Pentyl	21.0	67.7
Hexyl	23.2	66.3

Fig. 3 X-R ay diffraction pattern of $\mathrm{Hf}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Fig. 4 TheTG and DTG of the ethylamine intercalate of $\alpha-H f P$
The fully saturated ammonium phase of $\alpha-\mathrm{HfP}$ was obtained in order to determine its interlayer distance. The process occurs in a single stage and leads to the formation of the phase $\mathrm{Hf}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ with an interlayer distance of $9.25 \AA$ (Fig. 3). Taking into account this value and that the increment of the alkyl-chain length is estimated as $1.27 \AA$ for each additional carbon atom, ${ }^{5}$ the inclination angle of the intercalated molecules with respect to the layer plane can easily be determined: $\sin ^{-1}\left(d_{002}-9.25 / 2 \cdot n_{c} \cdot 1.27\right)$. The results are shown in Table 2.

Thermal analysis (TG) was performed for the intercalated compounds from room temperature to $900^{\circ} \mathrm{C}$. The curves show comparable shapes. At least four well defined steps of weight loss can be observed except in the methylamine case The first includes surface and crystal water. L oss of amine occurs in two equal steps, one for each mol of amine, in the range $\approx 175-$ $350^{\circ} \mathrm{C}$. At higher temperatures ($\approx 600^{\circ} \mathrm{C}$) the transformation of hydrogenphosphate groups into pyrophosphate takes place. As an example, Fig. 4 shows the TG and DTG of the ethylamine intercalate.

In the methylamine case the first loss takes place at $<100^{\circ} \mathrm{C}$ and is due to the crystallization water. The amine is lost in three steps between 150 and $400^{\circ} \mathrm{C}$ and the loss of structural water occurs at $\approx 600^{\circ} \mathrm{C}$. The results of thermal analysis concur in all cases with the formula proposed from elemental analysis.

Infrared spectra of the intercalation compounds are very similar and the amine protonation is reflected by the presence of a band at $1560 \mathrm{~cm}^{-1}$. The band at $1250 \mathrm{~cm}^{-1}$ assigned to the out-of-plane deformation of the $\mathrm{P}-\mathrm{O}-\mathrm{H}$ group and diagnostic of the presence of a monohydrogenphosphate group was never detected, indicating that the protonation of the amines is total.
The bilayered arrangement can be explained since there is just room for one alkyl chain in the upright position for every $\mathrm{P}-\mathrm{OH}$ group (the cross-sectional area of a trans-trans alkyl

Table 3 M icroanalytical data (C and N) and experimental weight loss at $800^{\circ} \mathrm{C}$ for the intercalated compounds with cyclic amines and those calculated (in parentheses) from the formulae

	A nalysis (\%)		
	C	N	Weight loss (\%)
Compound	28.21	4.59	41.62
$\alpha-\mathrm{Hf}\left(\mathrm{H} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	(27.88)	(4.64)	(41.49)
$\alpha-\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	23.65	4.62	38.91
	(23.82)	(4.63)	(38.71)
$\alpha-\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N} \cdot \mathrm{H}_{2} \mathrm{O}$	21.73	4.97	37.01
	(21.48)	(5.01)	(36.88)
$\alpha-\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{H}_{2} \mathrm{O}$	12.77	3.05	24.75
	(12.83)	(2.99)	(24.60)

Fig. 5 X-Ray diffraction patterns of cyclic amine intercalates: (a benzylamine, (b) cyclohexylamine, (c) piperidine and (d) pyridine
chain, $18.6 \times 10^{4} \mathrm{pm}^{2}$, is comparable to the free area surrounding each phosphate group, $23.7 \times 10^{4} \mathrm{pm}^{2}$), intercalated amines cannot interpenetrate the film already present and an ordered bilayer is obtained. ${ }^{18}$

Cyclic amines

Except for aniline, X-ray diffraction patterns of the cyclic amines- α - HfP intercalates (Fig .5) show the formation of pure phases (the peak corresponding to $\alpha-\mathrm{HfP}$ is never detected), the interlayer distances being: 18.7 (benzylamine), 15.4 (piperidine), 18.0 (cyclohexylamine) and $11.1 \AA$ (pyridine). When the intercalated amine is aniline a reflection at $18.2 \AA$ appears but the peak corresponding to $\alpha-\mathrm{HfP}$ remains with a marked intensity.
Table 3 shows the corresponding formula determined from elemental analysis. In the aniline case the stoichiometry was estimated approximately also from the relative intensity of the reflection corresponding to the interlayer distance, giving the composition $0.25\left[\mathrm{Hf}\left(\mathrm{HPO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right] \cdot 0.75 \alpha-\mathrm{HfP}$ from the values of the total weight loss (18.96\%) and elemental analysis (C, 8.27; N, 1.61\%).

Thermal analysis shows the loss of crystallization water at $<100^{\circ} \mathrm{C}$, the amine is desorbed in one to four steps in the range $150-350^{\circ} \mathrm{C}$ and the condensation water is lost between 550 and $600^{\circ} \mathrm{C}$. The TG and DTG curves for intercalated pyridine can be seen in Fig. 6.

The IR spectra presents the characteristic bands of the protonated amines. In the aniline case, despite the fact that only 25% intercalation takes place, an absorption at $2927 \mathrm{~cm}^{-1}$ and shoulder at $2870 \mathrm{~cm}^{-1}$ can be observed, characteristic of the stretching vibrations $v_{\text {asym }}$ and $v_{\text {sym }}$, respectively of the $\mathrm{NH}_{3}{ }^{+}$ group, and a band at $1250 \mathrm{~cm}^{-1}$ corresponding to $\mathrm{P}-\mathrm{O}-\mathrm{H}$ is clearly observed, corresponding to partial amine saturation.

Fig. 6 The TG and DTG of the pyridine $-\alpha$ - HfP intercalate
This band disappears for the rest of the amines indicating that protonation and saturation are complete.
These facts are in agreement with the behaviour reported previously ${ }^{12}$ for intercalates of this type: when the guest molecule contains a NH_{2} group (aniline, benzylamine, cyclohexylamine, piperidine) which upon protonation gives rise to a Sp^{3}-hybridized $\mathrm{NH}_{3}{ }^{+}$group, giving a good fit to the hexagonal arrangement of the $\mathrm{P}-\mathrm{OH}$ on the layer, the intercalation compound contains 2 mol of amine per mol of Hf and the guests are arranged in a bilayered fashion, while molecules containing a sp^{2}-hybridized N (pyridine) give rise to compounds containing 1 mol of amine per mol of Hf .

References

1 Y. Nakai, K. Imai, T. K awashima, K. Ohsmi, F. Irumi and Y. Tomita, A nal. Sci., 1990, 6, 689.

2 M. A. Salvadó, P. Pertierra, S. García-G randa, J. R. García, J. Rodríguez and M. T. Fernandez-D íaz, A cta Crystallogr., Sect. B, 1996, 52, 896.
3 J. M. Troup and A. Clearfield, I norg. C hem., 1977, 16, 3311.
4 A. Clearfield, C omments Inorg. Chem., 1990, 10, 89.
5 A . Clearfield, Inorganic I on Exchange M aterials, ed. A. Clearfield, CRC Press, Boca R aton, FL, 1982, vol. 1, pp. 2-74.
6 G. Alberti and U. Costantino, Intercalation Chemistry, eds. M. S. Whittingham and A. J. Jacobson, A cademic Press, N ew York, 1982, pp. 147-180.
7 A. Espina, J. B. Parra, J. R. García, J. A. Pajares and J. Rodríguez, J. M ater. Chem. Phys., 1993, 35, 250.

8 F. M enéndez, A. Espina, C. Trobajo, J. R. G arcía and J. Rodríguez, J. Incl. Phenom. M ol. Recog. Chem., 1993, 15, 215.

9 G. Alberti, C. Dionigi, S. M urcia-M ascarós and R. Vivani, Crystallography of Supramolecular Compounds, ed. G. Tsoucaris, K luwer, D ordrecht, 1996, pp. 143-157.
10 G . A lberti and U. Costantino, Inclusion Compounds, eds. J. L. A twood, J. E. D. Davies and D. D. M acN icol, Oxford U niversity Press, London, 1991, p. 5.
11 A. Clearfield, Progress in Intercalation Research, eds. W. M ullerWarmuty and R. Schollhorn, K luwer, D ordrecht, 1994, pp. 223271.

12 A. Clearfield and U. Costantino, Comprehensive Supramolecular Chemistry, eds. G. A lberti and T. Bein, Pergamon, N ew York, 1996, vol. 7, p. 107.
13 J. R. García, R. Llavona, M. Suárez and J. Rodríguez, J. Trends. I norg. C hem., 1993, 3, 209.
14 I. Tomita, K. M agani, H. Watanabe, K. Suzuki and T. Nakamura, Bull. Chem. Soc. Jpn., 1983, 56, 3183.
15 I. Tomita, M. Banju, K. N oguchi and T. Nakamura, Bull. Chem. Soc. J pn., 1984, 57, 3281.
16 M. L. Rodríguez, M. Suárez, J. R. G arcía and J. Rodríguez, Solid State Ionics, 1993, 63, 488.
17 M. K olthoff, E. B. Sandell, E. J. M eehan and S. Bruckenstein, Quantitative C hemical A nalysis, N igar, Buenos A ires, 1972.
18 U. Costantino, Inorganic I on Exchange M aterials, ed. A. Clearfield, CRC Press, Boca R aton, FL, 1982, vol. 3, pp. 111-132.

Received 25th M arch 1997; Paper 7/02071F

